Hemodynamic Forces Regulate Embryonic Stem Cell Commitment to Vascular Progenitors
نویسندگان
چکیده
Pluripotent embryonic stem can (ES) cells can differentiate into all cell lineages. During the process of embryonic development, ES cells are exposed to fluid flow or blood flow generated by the contracting heart. Absence of fluid flow results in the formation of abnormal cardiac chambers and valve formation. Thus, hemodynamic forces and ES cell differentiation to vascular progenitor cells (VPCs) are of emerging interests for restoring endothelial dysfunction, inducing angiogenesis, and forming blood vessel networks. Hemodynamic forces such as fluid shear stress increase the percentage of cells in the S and G(2)-M phases, and induce decondensation of chromatin for gene transcription. Fluid shear stress further accelerates ES commitment to CD31(+) VPC vascular progenitor cells. These ES-derived CD31(+) cells express endothelial nitric oxide synthase (eNOS) and von Willebrand factor (vWF). They are also capable of LDL uptake and tubular network formation. In this context, understanding hemodynamic forces and ES cell kinetics of differentiation towards endothelial lineage has potential therapeutic applications for repairing vascular damage and engineering vascular graft. Multidisciplinary team approach will likely garner momentum and synergize expertise to address the current road blocks in basic stem cell research for engraftable, restorative, low immunogenic, and non-tumorigenic endothelial progenitors in high purity and stability.
منابع مشابه
Are Stem Cells the next Therapeutic Tool for Heart Repair?
Cardiovascular disease remains the leading cause of morbidity and mortality in the United States and Europe. In recent years, the understanding that regenerative processes exist at the level of the myocardium, has placed stem cell research at center stage in cardiology. A stem cell is a cell that has the ability to divide (self replicate) for indefinite periods often throughout the life of the ...
متن کاملA role for all-trans-retinoic acid in the early steps of lymphatic vasculature development.
The molecular mechanisms that regulate the earliest steps of lymphatic vascular system development are unknown. To identify regulators of lymphatic competence and commitment, we used an in vitro vascular assay with mouse embryonic stem cell-derived embryoid bodies (EBs). We found that incubation with retinoic acid (RA) and, more potently, with RA in combination with cAMP, induced the expression...
متن کاملApplications of Cell Therapy in Vascular Surgery
Trying to use embryonic stem cells about 20 years ago, working with animals, especially rats began. During these years , many experiments in mouse embryonic stem cells to transform into a variety of cells and transplanting them were led to remarkable success . In the next issue of human stem cells were considered successful until finally in 1998 the first report was published in the proliferat...
متن کاملCanonical Wnt signaling is a positive regulator of mammalian cardiac progenitors.
Guiding multipotent cells into distinct lineages and controlling their expansion remain fundamental challenges in developmental and stem cell biology. Members of the Wnt pathway control many pivotal embryonic events, often promoting self-renewal or expansion of progenitor cells. In contrast, canonical Wnt ligands are thought to negatively regulate cardiomyogenesis in several species. However, t...
متن کاملWnt, activin, and BMP signaling regulate distinct stages in the developmental pathway from embryonic stem cells to blood.
The embryonic stem cell differentiation system was used to define the roles of the Activin/Nodal, BMP, and canonical Wnt signaling pathways at three distinct developmental stages during hematopoietic ontogeny: induction of a primitive streak-like population, formation of Flk1(+) mesoderm, and induction of hematopoietic progenitors. Activin/Nodal and Wnt, but not BMP, signaling are required for ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2008